Awarded Grants
Grand Challenges is a family of initiatives fostering innovation to solve key global health and development problems. Each initiative is an experiment in the use of challenges to focus innovation on making an impact. Individual challenges address some of the same problems, but from differing perspectives.
Showing page 1 out of 29 with 10 results per page.
Goat Extension and Marketplace with Vets and Value-Addition
Sanjeev Kumar of The Goat Trust in India will develop animated mobile applications that provide information on improving productivity, veterinary and financial services, and markets for women goat herders in the Indian states of Uttar Pradesh and Bihar to increase their income. These women work in remote regions with limited support, and many are illiterate. They will develop simple applications with health, nutrition, animal husbandry, a marketplace, and management components, and integrate value-chain players such as products and services suppliers. In health, they will develop a decision support tool to help farmers identify diseases using 141 symptoms and to select the most suitable treatment in consultation with vets. For the marketplace, farmers will be able to order quality products and pay directly. There will also be a web-based platform for goat sales. They will develop the applications in consultation with farmers and other stakeholders, and perform pilot testing.
EquiFarm Integrated Digital Platform
Esther Muiruri of Equity Group Foundation in Kenya will expand their Equity Online-Agriculture platform to provide information on agricultural best practices, including smart-farming innovations, as well as access to financing and markets to initially 200,000, and subsequently up to two million, small-scale farmers in Kenya to improve their productivity and income. They will build the platform to digitally disseminate agricultural information such as soil testing and pest and disease control, which will improve timely planting and crop and livestock management. They will also build in training in financial literacy targeted towards women, who make up the majority of agricultural workers, and access to financial support and tailored insurance products by implementing e-vouchers and loans, digital wallets and a credit scoring system. Market information and direct contacts with potential buyers will also be provided through an online platform.
Livestock Weight Detection Using Computer Vision-Based Smartphone App for Accurate Service Delivery
Shafiq-ul Islam of ACME AI in Bangladesh will produce a smartphone-based system that uses computer vision and machine learning to accurately estimate the weight of cows and goats to help smallholder livestock farmers in rural Bangladesh maximize productivity and profits. Accurately determining livestock weight is challenging for these farmers but critical for determining the right amounts of food and medicines. They will develop a machine learning model and mobile application that uses the smartphone’s camera to process distance, height, and depth information and calculate the weight of the animal to within >90% accuracy. They will test three different business cases, including combining the computer vision-based weighing system with products and service providers, and evaluate the impact on food and medicine purchases, and animal growth and quality, which are directly linked with income.
A Point-of-Care Test for Iron Deficiency Anemia (IDA)
Jesse Gitaka of Mount Kenya University in Kenya in collaboration with David Anderson of Burnet Institute in Australia, will develop a diagnostic device for iron deficiency anemia that is suitable for resource-limited settings. Iron deficiency anemia can cause maternal death, prematurity and stunting. Current diagnostic tests require expensive equipment or are not specific enough to distinguish between the different causes of anemia. They will develop a device that detects the low levels of hemoglobin found in immature red blood cells, called reticulocytes. The device will use magnetic beads and microfluidics to physically separate reticulocytes from whole blood, and then absorbance to measure the red color of hemoglobin and thereby determine levels. They will use samples from healthy donors to develop algorithms that can calculate the amount of hemoglobin per reticulocyte to provide an accurate diagnosis.
Global Immunology and Immune Sequencing for Epidemic Response (GIISER) in Uganda
Pontiano Kaleebu of the Uganda Virus Research Institute in Uganda will expand their genome surveillance platform to monitor the circulation of SARS-CoV-2 variants in Uganda to help inform timely public health decisions and the development of diagnostics and vaccines. They will obtain geographically-representative COVID-19 patient samples for genomic sequencing, as well as samples from strategic sites including points of entry, where several variants have emerged. They are also collecting blood samples and nasopharyngeal swabs from patients, some of whom have been vaccinated, to determine their ability to neutralize viral variants and to produce monoclonal antibodies for potential use as diagnostics or for vaccine design. The methods and capacity established during this project will also be used for immunological surveillance of other infectious diseases.
African-Rapid Immuno-Surveillance System for Epidemic Response (ARISE)
Christian Happi of Redeemer's University in Nigeria will assess the impact and risks of emerging SARS-CoV-2 virus variants in Africa, which are threatening vaccination efforts. They will produce viral pseudotypes using genomic sequences of around ten SARS-CoV-2 variants-of-concern that are dominant in Africa. These pseudotypes will be used in high-throughput neutralization assays with Vero cells in the presence of serum samples taken from over 400 vaccinated or previously-infected Nigerians, which contain many different types of antibodies, to evaluate their ability to neutralize the viral variants. This will reveal how well protected the population is against viral variants, and inform vaccine and immunization strategies. The serum samples that strongly protect against a range of SARS-CoV-2 variants will be subjected to single-cell immunoglobulin gene sequencing to identify neutralizing monoclonal antibodies for designing more effective vaccines.
SARS-CoV-2 Variant Evaluation in Kenya (SAVE-K)
Charles Sande of the African Research Collaboration for Health (ARCH) in Kenya will build on their existing SARS-CoV-2 genomic surveillance work covering the six counties of Coastal Kenya to identify new SARS-CoV-2 variants and evaluate their sensitivity to existing vaccines. Daily naso- and oropharyngeal samples from suspected COVID 19 cases will be processed for PCR testing and genome sequencing to identify any new SARS-CoV-2 variants. They will then evaluate the potential impact of these new variants on the Kenyan population by measuring the neutralizing activity of antibody-containing plasma obtained from a cohort of vaccinated adults. Using established channels, they will rapidly communicate their results to local and national health ministries, and across the African continent, to inform pandemic control strategies. Selected samples will be preserved for future monoclonal antibody development to target new variants.
Reducing Unnecessary Cesarean Sections in Bangladesh
Khurshid Talukder from the Centre for Woman and Child Health in Bangladesh will scale-up their proven approach using a package of 11 service interventions, including antenatal counselling and supportive care during labor, to reduce the cesarean section rate across Bangladesh. Bangladesh has an unnecessarily high cesarean section rate, which can have severe short and long-term health consequences for the mother and child. They developed a multi-service intervention to reduce the rate in their own hospital from 65% to 42% over two years. They will hold workshops at six other large maternity units for tailoring the intervention package to local needs, and train managers and maternity personnel to effectively deliver it in their clinics over an 18-month period. They will evaluate the effect of their approach on reducing cesarean section rates.
Effect of Soymilk-Burkina Intake on Gut Microbiome and Nutritional Status of Ghanaian Women
Mary Glover-Amengor of the Food Research Institute in Ghana will investigate whether drinking soymilk-burkina, a Ghanaian indigenous fermented milk and millet beverage (smoothie), improves the nutritional status and gut health of women of reproductive age living in the Volta and Oti regions of Ghana. They will produce the soymilk-burkina and test it for bacterial and fungal content and consumer acceptability. They will also recruit 30 pregnant and non-pregnant women and perform a randomized controlled trial to test the effect of daily consumption of 330ml soymilk-burkina over six months. Monthly blood and fecal samples will be collected during trial, and two months after, to analyze nutritional status, inflammation biomarkers and parasites. The gut microbiome will also be analyzed using culture-based assays and next generation sequencing.
Fermented Millet Porridge for Maternal Gut Health in Rural Burkina Faso
Laeticia Celine Toe of Institut de Recherches en Sciences de la Santé in Burkina Faso will evaluate the nutritional content of traditionally-fermented millet porridge and its effects on gut health and inflammation in women of reproductive age in rural Burkina Faso. Maternal undernutrition affects child survival and is a major problem in sub-Saharan Africa and south Asia. This could be addressed by enhancing the nutritional content of common foods, which can be done by fermentation. They will provide a selection of households with locally-produced millet grain for fermenting, and collect samples every five days to evaluate the nutritional and microbial contents. They will also recruit a cohort of 30 women, including 15 pregnant women, to assess the effects of daily fermented millet porridge consumption on fecal microbiota composition, fatty acid levels, and inflammatory markers.