All Awards
We challenge innovators around the world to work on urgent priorities in global health and development. We issue new challenges regularly and award the most promising proposals with grant funding.
Showing page 1 out of 1 with 10 results per page.
Bacterial Spores as Vaccine Delivery Systems
To maintain stability and viability, most childhood vaccines must be kept cool - both heat and freezing can ruin them. That means they must be refrigerated at the correct temperature throughout transportation, storage, and delivery. This cold chain is difficult and costly to maintain, especially in developing countries. Dr. Sonenshein and his team are working to create childhood vaccines for diphtheria, tetanus, and pertussis (the DTP combination vaccine), and rotavirus-related diarrhea that can withstand a wide range of temperatures without refrigeration by encapsulating them in harmless bacterial spores that are naturally heat-resistant.
Increasing Vaccine Stability Through Novel Technology
To maintain stability and viability, most childhood vaccines must be kept cool – both heat and freezing can ruin them. That means many must be refrigerated at the correct temperature throughout transportation, storage, and delivery. This cold chain is difficult and costly to maintain, especially in developing countries. Dr. Gardner and his colleagues are adapting high-throughput formulation technology developed by TransForm Pharmaceuticals, Inc. that can quickly screen different formulations of vaccines to identify those that are most likely to be stable, safe, and effective. The team's initial work focuses on reducing refrigeration requirements for the existing live attenuated vaccine for measles, a freeze-dried vaccine that must be stored at between 2° and 8° Celsius and is very sensitive to heat and light once it is reconstituted.
Thermostable Vaccines with Improved Stability at Non-Refrigerated Temperatures
To maintain stability and viability, most childhood vaccines must be kept cool – both heat and freezing can ruin them. Drs. Sarkari and Coeshott and their colleagues are working to identify Pluronic polymer-based formulations that stabilize vaccines from -10°C to 45°C. Their aim is to develop vaccines that are resistant to freezing and form protective matrices at elevated temperatures. Investigators are evaluating formulations based on Pluronic F127 using vaccines for measles and hepatitis B.