Bill & Melinda Gates FoundationGlobal Grand Challenges
  • Grant Opportunities
  • Challenges
  • Awards
  • Champions
  • Partnerships
  • News
  • About

Awards

Grand Challenges is a family of initiatives fostering innovation to solve key global health and development problems. Each initiative is an experiment in the use of challenges to focus innovation on making an impact. Individual challenges address some of the same problems, but from differing perspectives.

10Awards

Showing page 1 out of 1 with 10 results per page.

Initiatives: Grand Challenges
Challenges: Data Science Approaches
Years: 2021
Show Descriptions
Results per page

Addressing Critical COVID-19 Questions Through Research Using Linked Population Data (ACCORD)

Andrew Boulle, University of Cape Town (Cape Town, South Africa)
Jul 5, 2021

Andrew Boulle and colleagues at the Western Cape Government Health Department and the University of Cape Town in South Africa will use a data science approach applied to anonymized COVID-19 health data from the government health department including over one million tests and 60,000 hospital admissions, to study the clinical epidemiology and evolution of a new variant of SARS-CoV-2 that emerged in South Africa and the impact on patients with existing health conditions. They will conduct a case-control study to determine the clinical severity of the variant and use a cross-sectional design to explore the evolution of viral load. They will also analyze the impact of COVID-19 on pregnancy by evaluating birth weight and other birth outcomes, such as still births, and use death registries to determine mortality rates in patients with HIV, TB, and diabetes.

Characterizing COVID-19 Transmission Chains for Precision Mitigation Using Epidemiological Survey Data

Xiaofan Liu, City University of Hong Kong (Kowloon, China)
Jul 5, 2021

Xiaofan Liu at the City University of Hong Kong in China and colleagues will reconstruct COVID-19 transmission chains between individuals in communities and households using statistical methods applied to existing datasets to more reliably estimate COVID-19 transmission characteristics, such as reproduction rates, that are critical for planning effective control measures. Currently, transmission characteristics are estimated using aggregated-level data, which leads to inaccuracies. Ideally, data on how COVID-19 is transmitted between individuals are needed. They will curate an existing collection of datasets containing over 40,000 COVID-19 cases in five Asian countries with person-to-person transmission evidence to reconstruct transmission chains. They will then apply statistical tests and an analytical methodology called regression analysis to identify the most important transmission risk factors, which may include virus strain, transmission media, population density, and climate conditions.

Data Descriptor, Reference Coding, and Characterization of the Systemic Complications of Critical Care Patients Included in the ISARIC COVID-19 Dataset

Luis Reyes, Universidad de La Sabana (Chía, Colombia)
Jul 5, 2021

Luis Felipe Reyes at the Universidad de La Sabana in Colombia and colleagues will develop a standardized strategy for researchers to better utilize the ISARIC-COVID-19 dataset, which consists of over 520,000 hospitalized patients from more than 62 countries, and identify the causes and health impacts of severe complications. The dataset is particularly valuable because it covers varying standards-of-care around the world and could be used to study the geographic and time-based variability of the disease. The team will develop a standardized strategy to reformat and clean the ISARIC-COVID-19 dataset by producing data descriptors and reference codes and use this strategy to identify the risk factors and clinical characteristics of COVID-19 complications, such as cardiovascular complications, which are a major contributor to long-term morbidity and mortality, in order that vulnerable patients can be better treated.

Effectiveness of COVID-19 Vaccination in Brazil Using Mobile Data

Fernando Bozza, Fiocruz (Rio de Janeiro, Rio de Janeiro, Brazil)
Jul 5, 2021

Fernando Bozza at Fiocruz in Brazil and colleagues will quantify the real-world value of COVID-19 vaccines in Brazil for protecting individuals from severe disease and for protecting the entire population from being infected. Knowing how effective vaccination is, and how durable the response in the real world is, particularly in low- and middle-income countries, it is critical for ending the pandemic. They will determine the effectiveness of the vaccine for protecting individuals using an approach called test-negative design together with statistical and machine learning approaches to compare the severity of respiratory disease in COVID-19 patients from 43 hospitals. At the population level, they will perform an ecological study, and use regression analysis accounting for inequities to vaccine access, to measure the effect of vaccinations on COVID-19 cases, hospitalizations, and deaths.

Evaluating Effects of Social Inequalities on the COVID-19 Pandemic in a Low- and Middle-Income Country (LMIC)

Maria Yury Travassos Ichihara, Fiocruz (Rio de Janeiro, Rio de Janeiro, Brazil)
Jul 5, 2021

Maria Yury Ichihara and colleagues at the Centre for Data and Knowledge Integration for Health (Cidacs) at Fiocruz in Brazil will create a social disparities index to measure inequalities relevant to the COVID-19 pandemic, such as unequal access to healthcare, to identify regions that are more vulnerable to infection and to better focus prevention efforts. In Brazil, markers of inequality are associated with COVID-19 morbidity and mortality. They will develop the index of available COVID-19 surveillance data, hosted on the Cidacs platform, and build a public data visualization dashboard to share the index and patterns of COVID-19 incidence and mortality with the broader community. This will enable health managers and policymakers to monitor the pandemic situation in the most vulnerable populations and target social and health interventions.

Incidence and Risk Factors for COVID-19 Amongst Pregnant and Lactating Women and their Infants in Uganda

Kirsty Le Doare, MRC/UVRI and LSHTM Uganda Research Unit (Entebbe, Uganda)
Jul 5, 2021

Kirsty Le Doare and colleagues at the MRC/UVRI & LSHTM Uganda Research Unit and Makarere University John's Hopkins University in Uganda will develop a model using data collected in real-time to identify the risk factors for adverse pregnancy and infant outcomes caused by the COVID-19 pandemic that can be used to rapidly inform interventions. Lockdowns can severely impact women giving birth and access to maternal, neonatal, and child healthcare. They will apply a Bayesian multivariate network meta-analysis, (a methodology that simultaneously analyses multiple outcomes and multiple treatments, allowing more studies to contribute towards each outcome and treatment comparison) to electronic medical records, leveraging existing data on the effect of the lockdown on antenatal and delivery services for over 30,000 pregnancies, vaccination data, and information on COVID-19 infection in pregnancy and infancy. They will also build a user-friendly data dashboard to support decision-making on infection prevention and control at the Ministry of Health.

Routine Assessment of Infections, Prevention, and Control of SARS-CoV-2 on Unequal Populations

Juliane Foseca de Oliveira, Fiocruz (Rio de Janeiro, Rio de Janeiro, Brazil)
Jul 5, 2021

Juliane Foseca de Oliveira and colleagues at Fiocruz in Brazil will develop mathematical and statistical methods to model COVID-19 infection transmission, prevention and control across populations in Brazil to better inform local intervention efforts. Social and economic inequalities are known to shape the spread of diseases, therefore the team will integrate existing health data together with social and economic determinants for 5,570 Brazilian cities, as well as assessing data on the effects of the mitigation strategies and social mobility patterns. These data will be used to develop and apply statistical analyses and nonlinear mathematical modelling to forecast disease evolution and outcomes that consider the specific socio-economic conditions, which influence transmission rates. The results will be presented on a user-friendly surveillance platform that can be used by local governments and communities to identify the most effective control methods for their region.

The Impact of COVID-19 on Chronic Care Patients' Health Care Utilization and Health Outcomes in Haiti, Malawi, Mexico and Rwanda

Dale Barnhart, Partners In Health (Boston, Massachusetts, United States)
Jul 5, 2021

Dale Barnhart and colleagues at Harvard Medical School in the U.S. and Partners in Health of Haiti, Malawi, Mexico, and Rwanda will determine how the COVID-19 pandemic has impacted health care provision and utilization for patients with HIV, heart disease, and diabetes, and the health outcomes of these patients, in all four countries. They will pool existing electronic medical data on chronic care patients collected from up to 30 health facilities in each country and create a harmonized database to identify the impacts of COVID-19 and any successful strategies used to improve care. They will also develop a predictive model to identify which patient populations are most at risk from care disruption during the pandemic, which can help prioritize clinical and geographic areas that need interventions. Finally, they will develop data visualization tools to facilitate the communication and interpretation of the data by chronic care managers across the four different countries.

The PRIEST (Pandemic Respiratory Infection Emergency System Triage) Study for Low- and Middle-Income Countries

Carl Marincowitz, University of Sheffield (Sheffield, United Kingdom)
Jul 5, 2021

Carl Marincowitz and colleagues at the University of Sheffield in the United Kingdom and the University of Cape Town in South Africa will develop a risk assessment tool to help emergency clinicians quickly decide whether a patient with suspected COVID-19 needs emergency care or can be safely treated at home to avoid overburdening hospitals particularly in low- and middle- income countries (LMICs). They will use existing data to which they have access on 50,000 patients with suspected COVID-19 infection who sought emergency care in the United Kingdom, South Africa, and Sudan to develop prediction models for specific COVID-19 related outcomes in all income settings. These prediction models will be used to develop risk stratification tools, which enable providers to identify the right level of care and services for distinct subgroups of patients. These will be developed with input from patient and clinical stakeholders. The team will test the performance of their risk assessment tools for identifying high-risk patients with existing triage methods.

Impact of COVID-19 on Health Service Delivery and Institutional Mortality: A Multi-Country Consortium

Catherine Arsenault, Harvard T.H. Chan School of Public Health (Cambridge, Massachusetts, United States)
Mar 4, 2021

Catherine Arsenault at the Harvard T.H. Chan School of Public Health in the U.S. and colleagues will measure the effect of the COVID-19 pandemic and associated containment policies such as curfews on the quality of health care in seven countries and the rates of mortality from non-COVID conditions. They have extracted data from health management information systems spanning two years from Ethiopia, Ghana, Haiti, Laos, Mexico, Nepal, and South Africa. They will first clean the data and then apply an analytical tool called segmented regression analysis to assess the effect of the pandemic on health service delivery, such as the provision of certain preventive and curative services, and use a statistical technique called difference-in-differences estimations to assess the effect of containment policies on healthcare demand, such as patient appointments. This will help countries to address gaps in their health care systems and plan recovery strategies for missed health care.

Show Descriptions
Results per page