• About
  • Partnerships
  • Challenges
  • Awarded Grants
  • Grant Opportunities
  • News

Characterizing COVID-19 Transmission Chains for Precision Mitigation Using Epidemiological Survey Data

Xiaofan Liu at the City University of Hong Kong in China and colleagues will reconstruct COVID-19 transmission chains between individuals in communities and households using statistical methods applied to existing datasets to more reliably estimate COVID-19 transmission characteristics, such as reproduction rates, that are critical for planning effective control measures. Currently, transmission characteristics are estimated using aggregated-level data, which leads to inaccuracies. Ideally, data on how COVID-19 is transmitted between individuals are needed. They will curate an existing collection of datasets containing over 40,000 COVID-19 cases in five Asian countries with person-to-person transmission evidence to reconstruct transmission chains. They will then apply statistical tests and an analytical methodology called regression analysis to identify the most important transmission risk factors, which may include virus strain, transmission media, population density, and climate conditions.

More information about Grand Challenges ICODA COVID-19 Data Science

Great ideas come from everywhere.

Sign up for email updates of the latest grant opportunities and awards.

View the Grand Challenges partnership network

The Bill & Melinda Gates Foundation is part of the Grand Challenges partnership network. Visit grandchallenges.org to view the map of awarded grants across this network and grant opportunities from partners.