Awards
Grand Challenges is a family of initiatives fostering innovation to solve key global health and development problems. Each initiative is an experiment in the use of challenges to focus innovation on making an impact. Individual challenges address some of the same problems, but from differing perspectives.
Showing page 1 out of 254 with 10 results per page.
Climate-Focused Analytics and Modeling for Mosquito-Borne Infections in Southern Africa (CAMMISA)
Sheetal Silal of the University of Cape Town in South Africa will establish a research consortium to analyze how climate change affects the transmission and control of mosquito-borne diseases, focusing on how to optimize interventions for malaria, chikungunya and dengue in Southern Africa. The consortium will integrate research projects led by local data scientists working closely with local decision-makers. Through mathematical and statistical modeling together with climate science, these projects will determine climate scenarios across time scales relevant for management of mosquito-borne diseases. These time scales will encompass short-term windows (6-12 months) as well as longer windows (5-10 years) relevant for policy planning and that incorporate the predicted impact and costs of new interventions. The consortium will also explore even longer windows (over 30 years) to provide predictions useful to initiate policy discussions and bring attention to the long-term implications of climate change on disease control strategies.
This grant is funded by The Wellcome Trust.
Leptospirosis in Changing Climates: Soil Health, Sociocultural Behaviors, and Public Health Policy
Roman Thibeaux of the Institut Pasteur de Nouvelle Calédonie in New Caledonia will examine how climate-driven soil changes and societal and behavioral factors can affect the incidence of leptospirosis to develop community-centered prevention strategies. The causal agent of the disease is the bacterium Leptospira, which can be found in water or soil contaminated with the urine of infected animals and thus can spread following heavy rainfall. Leptospirosis is endemic in the New Caledonia archipelago in the South Pacific, with potential climate-driven increases in incidence. Using soil microcosms in the laboratory, they will explore the effects of temperature, rainfall, and soil structure on Leptospira survival and dispersion. Through interviews and focus groups with New Caledonia community members together with ethnographic fieldwork, they will record local perceptions and knowledge relevant to leptospirosis and its transmission. In partnership with local community members and health authorities, they will then identify sustainable strategies to reduce leptospirosis incidence.
This grant is funded by the Pasteur Network.
Modeling for Decisions in a Dynamic Africa
Susan Rumisha of Ifakara Health Institute in Tanzania will support the establishment of data modeling hubs in the Democratic Republic of Congo, Nigeria, and Tanzania, linking them into a collaborative network to guide the control of mosquito-borne diseases in the face of climate change. The focus will be on the direct and indirect effects of environmental change on malaria, modeling the interplay of these effects with public health systems and mosquito vector and disease patterns. This will encompass modeling mosquito vector distribution, abundance, and seasonality using historical climate data together with new microclimate information. The models will be designed to support national programs in prioritizing vector surveillance activities, targeting interventions, and developing early warning systems for emerging health threats. The network will strengthen model-building expertise and could be adapted to address mosquito-borne arboviral diseases.
This grant is funded by The Wellcome Trust.
Modelling Aedes-borne Diseases for Improved Public Health Decision-Making in the Horn of Africa
Bernard Bett of the International Livestock Research Institute in Kenya will develop disease transmission models for two Aedes mosquito-borne arboviral diseases, dengue and chikungunya, and use the models to design decision support tools to guide surveillance and control of these diseases in Kenya, Somalia and Ethiopia. The models will be validated with longitudinal field data, including mosquito population density, infection patterns, blood meal sources, and the incidence of Aedes-borne diseases in humans. The models will be used to estimate important metrics for disease management, such as time-to-disease outbreak, cost effectiveness of control, and spatial distribution of risk. They will also help identify how the ecological tipping points for outbreaks of dengue and chikungunya compare to each other and how existing control measures for the two diseases could be integrated for better health outcomes. The project will link institutions including the Ethiopia Public Health Institute, Kenya’s Department of Disease Surveillance and Epidemic Response, Somalia’s Federal Ministry of Health, Jomo Kenyatta University of Agriculture and Technology, Abrar University, the Kenya Medical Research Institute, Ohio State University, Global One Health Initiative, and the International Livestock Research Institute.
This grant is funded by The Wellcome Trust.
Syndemic Disease Modeling to Optimize Health Service Integration in Africa
Mary Mwanyika-Sando of Africa Academy for Public Health in Tanzania will develop a mathematical model that accounts for multiple co-occurring diseases and their interactions as well as resource constraints to design integrated healthcare services for people living with HIV in Burkina Faso, Tanzania, and South Africa. The team will use high-quality longitudinal data from four health and demographic surveillance sites. They will characterize co-morbidities and the syndemic clustering of HIV with other diseases (synergistic epidemics), including hypertension, diabetes, and depression, that is due to interrelated biological, environmental, and behavioral factors. They will use the model to predict current and future chronic disease burdens of HIV and other diseases, and then determine optimal health service delivery. The results will be used to co-design intervention implementation strategies with local implementers and policy makers.
Anti-TB Drug Discovery: Design, Synthesis, Evaluation, and Mechanistic Studies
Rajshekhar Karpoormath of the University of KwaZulu-Natal in South Africa will test a set of potential anti-TB hit compounds against clinically relevant TB strains, using the results to generate optimized hit compounds for development of new anti-TB drugs. They will screen the potential hits against susceptible, monodrug-resistant, multidrug-resistant, and extensively drug-resistant TB strains as well as other Mycobacterium strains. The screening results will inform structure-based drug design to generate optimized hit compounds. Potential lead hits will be screened again, with the most promising evaluated against intracellular bacteria in macrophages, tested for in vitro cytotoxicity, and evaluated for mechanism of action in bioassays including carbon-isotope tracing metabolomics and an in vitro granuloma assay.
Remodeling Maternal Health Care: Evaluating the Impact of Midwife-Led Birthing Centers on Maternal and Neonatal Health Outcomes in Ethiopia
Solomon Hailemeskel of Debre Berhan University in Ethiopia will pilot test midwife-led birthing centers for pregnant women and newborns at low risk of complications to increase access to safe, high-quality childbirth experiences for Ethiopian women. They will implement a multicenter randomized controlled trial, recruiting a cohort of pregnant women from antenatal care clinics across diverse healthcare facilities to ensure a representative sample. After training midwives to provide continuity of care before, during, and after pregnancy, they will establish midwife-led birthing centers in dedicated spaces, either within or separate from a higher-level health facility. A subset of trial participants will be randomly assigned to the birthing centers. They will compare outcomes for the two groups, including data on maternal and neonatal health outcomes, as well as qualitative data from interviews of mothers, midwives, and healthcare providers.
Revolutionizing Decentralized Diagnosis of Bacterial Sexually Transmitted Infections for Women Worldwide
Rapidemic in the Netherlands will collaborate with Mohammed Majam of Ezintsha in South Africa to develop a prototype for a molecular test for rapid multiplex diagnosis of chlamydia and gonorrhea, while determining the requirements for its deployment in South African primary care settings to serve hard-to-reach populations. The test system will be designed to diagnose symptomatic and asymptomatic patients accurately and inexpensively using a rapid and disposable test. To guide prototyping, they will research user preferences and assess the usability of the developed device. They will also conduct research to ensure that the development meets regulatory requirements for the South African market and addresses the needs of pharmacies and primary healthcare settings in South Africa.
Integrating ChatGPT-4 with a Wearable Vital Signs Monitor to Improve User Proficiency and Clinical Decision Making for Neonatal Care in Kenya
Sona Shah of Neopenda, PBC in Kenya will integrate ChatGPT-4 as a virtual assistant for the wearable, vital sign monitor neoGuard, supporting healthcare providers in effectively monitoring and managing neonatal health. They will train ChatGPT-4 to help providers identify and address challenges with the neoGuard monitor, such as poor sensor placement on the patient, and to give providers appropriate recommendations based on vital sign data together with the clinical information they gathered. This real-time clinical decision support would be particularly beneficial in remote and understaffed healthcare facilities. For model training, they will use a dataset of newborns admitted to a hospital in Kenya, including vital signs, clinical histories, and treatment outcomes, as well as insights from unstructured clinical notes extracted using natural language processing. They will evaluate use of neoGuard with ChatGPT-4 for reliability, accuracy, and user-friendliness, and compare neonatal patient outcomes before and after ChatGPT-4 integration with the monitor.
Molecular Epidemiology of HPV Infections in Kenyan Women with Cervical Cytological Abnormalities
Moses Obimbo Madadi of the University of Nairobi in Kenya and Aida Sivro of the University of Manitoba in Canada will determine the molecular epidemiology of human papillomavirus (HPV) in cervical cancer cases in Kenya to enable monitoring of changes in the prevalence of HPV types targeted by current vaccines and detect possible replacement with other types. They will perform a cross-sectional study on Kenyan women being followed-up for cervical cell abnormalities at hospitals in Nairobi and in rural Kenya. Outcome measures will include prevalence of HPV genotypes by age, geographic location, and HIV status. HPV genotypes will be stratified by cervical diagnosis to determine the top genotypes associated with cervical cancer. This research will provide robust and standardized statistics on the burden and genetics of oncogenic HPV infection in Kenyan women.