• Grant Opportunities
  • Partnerships
  • Systems

Awards

Grand Challenges is a family of initiatives fostering innovation to solve key global health and development problems. Each initiative is an experiment in the use of challenges to focus innovation on making an impact. Individual challenges address some of the same problems, but from differing perspectives.

17Awards

Showing page 1 out of 2 with 10 results per page.

Grand Challenges
Annual Meeting Call-to-Action
2025
Show Descriptions
Results per page

Levonorgestrel Vaginal Film for Heavy Menstrual Bleeding and Contraception

Lisa Rohan, University of Pittsburgh (Pittsburgh, Pennsylvania, United States)
Dec 2, 2025

Lisa Rohan of the University of Pittsburgh in the U.S., with Thesla Palanee-Phillips of the Wits Health Consortium (Pty) Ltd in South Africa, will develop a vaginal film technology for the sustained release of the hormone levonorgestrel as a product that provides contraception and reduces heavy menstrual bleeding. Levonorgestrel is a progestin, a synthetic hormone that mimics the effects of progesterone. They will create and compare vaginal films with differences in mechanical properties, mucoadhesion, and drug release profiles to design a product that is low-cost, self-administered, and active for one month. They will also conduct a pilot trial of two prototype placebo films without levonorgestrel, evaluating them for safety, acceptability, and mucoadhesion in 20 women in South Africa, half with heavy menstrual bleeding.

Advancing Kenya's Women's Health through Policy and Fem-Tech Capacity Building

Anne Beatrice Kihara, University of Nairobi (Nairobi, Kenya)
Nov 25, 2025

Anne Beatrice Kihara with Moses Madadi, both of the University of Nairobi in Kenya, will pilot a multipronged approach to support research and development for women’s health in Kenya. They will co-develop a policy and regulatory framework that integrates gender equity, working with government stakeholders, including the Ministry of Health and regulators, as well as civil society groups and women-led organizations. They will develop case studies of healthcare technologies for women’s health, focused on how accessible these technologies are for women in underserved communities; launch community-based campaigns to increase awareness and understanding of women’s health and healthcare solutions; and train healthcare professionals in applying an equity perspective in women’s health research and care. Community feedback will guide an iterative approach throughout these efforts.

Genetic and Phenotypic Variability in Drug Metabolism in African Populations

Mathew Njoroge, University of Cape Town (Cape Town, South Africa)
Nov 24, 2025

Mathew Njoroge of the University of Cape Town in South Africa, with Roslyn Thelingwani of the African Institute of Biomedical Science and Technology in Zimbabwe, will analyze liver tissue from an African patient biobank to characterize the variability in drug metabolism in African populations. The analysis will combine genotyping, in vitro physiology studies, and pharmacokinetic modeling. Using the biobank samples, they will perform targeted sequencing of genes known to be associated with drug absorption, distribution, metabolism, and excretion, and then use the genotyped samples for in vitro analysis of drug clearance. This data will be combined with data modeling to predict the variability of drug pharmacokinetics in vivo to guide drug development and inform the design, monitoring, and interpretation of clinical trials.

Exploring Heavy Menstrual Bleeding Among Adolescent Girls in Informal Settlements in Nairobi Kenya

Cliveland Ogallo, CPHD (Nairobi, Kenya)
Nov 19, 2025

Cliveland Ogallo of the Center for Public Health and Development (CPHD) with Anne-Beatrice Kihara of the University of Nairobi, both in Kenya, will assess the impact of heavy menstrual bleeding on the health and well-being of adolescent girls in an underserved community in Kenya. Girls in the Kibera urban informal settlement will be surveyed, along with guardians and health workers, to assess the prevalence of self-reported heavy menstrual bleeding; menstrual health literacy and associated cultural narratives; hygiene practices; access to healthcare products and services; and impacts including anemia, school absenteeism, and psychosocial well-being. Small-scale interventions will also be piloted, such as introducing menstrual kits with educational packets and dedicated physical spaces for menstrual hygiene.

Multi-Functional and Multi-Stage Immunity to Transform Malaria Vaccine Efficacy

James Beeson, Burnet Institute (Melbourne, Victoria, Australia)
Nov 18, 2025

James Beeson of the Burnet Institute with Stephen Scally of The Walter and Eliza Hall Institute, both in Australia, will develop candidate malaria mRNA vaccines designed to confer multiple types of immunity over multiple lifecycle stages of the malaria parasite. They will start with lead candidates that target Plasmodium merozoites, screening them with a human organoid model of the germinal center for their ability to activate B cell responses. Based on these tests, they will add antigens and test the resulting multi-antigen vaccines in animal models to create candidates that confer anti-merozoite, anti-sporozoite, and transmission-blocking immunity.

Inducing Liver-Specific Immunity for Malaria Using Arcturus Self-Amplifying mRNA

Brian Sullivan, Arcturus Therapeutics (San Diego, California, United States)
Nov 17, 2025

Brian Sullivan of Arcturus Therapeutics, with Sean Murphy of the University of Washington Foundation, both in the U.S., will pilot test a self-amplifying mRNA vaccine technology as a platform for developing malaria vaccines. They will use a mouse model of malaria, establishing infections in parallel with two different Plasmodium parasite species. They will test preventive treatments in this model, comparing self-amplifying mRNA vaccine technology to conventional mRNA and comparing intramuscular versus intravenous administration. They will assess the ability of each test vaccine to protect against liver-stage infection, determining the number of liver-stage parasites and how well the vaccine elicits potent, malaria-specific T-cell responses in the liver. The prolonged antigen expression characteristic of self-amplifying mRNA vaccines could be particularly valuable in inducing long-term protection against malaria.

ISILUNA: Global Citizen Science Impact on Menstrual Products on the Vaginal Microbiome

Sarah Leeber, University of Antwerp (Antwerp, Belgium)
Nov 13, 2025

Sarah Leeber of the University of Antwerp in Belgium, with Marie Josiane Kenfack of the Center for Research on Emerging and Reemerging Diseases (CREMER) in Cameroon, will add DNA sequencing analysis of the vaginal microbiota as a component for a set of clinical trials of menstrual hygiene products in Belgium, Switzerland, Cameroon, and Peru. The longitudinal trials compare use of different menstrual products, with participants using either the same product over time or different products in sequence, including pads, tampons, cups, and underwear. Surveys and group discussions will be used to gather data on user perceptions of the products and how acquiring knowledge of the microbiome may influence attitudes and practices. Shotgun metagenomic sequencing from self-collected samples will reveal changes in the vaginal microbiota associated with different products. Together, this data will provide a more comprehensive understanding of both the biological and behavioral dimensions of menstrual product use.

Diaspora-Powered Virtual Ecosystem for Supporting Senior Scientists and Institutions in Africa

Almaz Negash, African Diaspora Network (Santa Clara, California, United States)
Nov 12, 2025

Almaz Negash of the African Diaspora Network in the U.S. will build an AI-augmented collaboration hub that matches senior African scientists with experienced researchers and innovators in the African diaspora. The hub will include AI-assisted profiling of skills and needs, focusing on areas including pharmacogenetics, pharmaceutical manufacturing for preclinical and clinical trials, infectious disease control, and data science. The hub will host monthly masterclasses and peer-learning sessions, and it will support co-designed research, co-supervision of students, joint grant applications, and technology transfers. It will be launched with an inaugural cohort of Africa-based scientists, including the Calestous Juma Fellows as an existing network of science leaders already embedded in African universities and research centers.

HELES Patch: Novel Microneedle Patch for Treatment of Heavy Menstrual Bleeding

Margaret Ilomuanya, University of Lagos (Lagos, Nigeria)
Nov 12, 2025

Margaret Ilomuanya of the University of Lagos in Nigeria will develop a multifunctional microneedle patch for delivery of agents that treat heavy menstrual bleeding while preventing disease from sexually-transmitted viral infections. The patch will be designed for use on the abdomen or thigh, and it will have a layered architecture to deliver multiple drugs: tranexamic acid and the progesterone-mimic levonorgestrel to reduce bleeding (with levonorgestrel also having contraceptive activity) and the antiviral drug tenofovir. Microneedle-delivered tranexamic acid and levonorgestrel will be tested, both for their safety and their ability to control bleeding, in assays including clotting in vitro, a rat model, and a rabbit model of menstruation. Women experiencing heavy menstrual bleeding will be engaged for group discussions to assess the acceptability, usability, and desirability of the microneedle patch compared to existing treatment options, such as oral tranexamic acid and hormonal intrauterine devices.

High-Throughput Growth Inhibition Assays for Antimalarial Protein Drugs

Brandon DeKosky, Massachusetts General Hospital (Boston, Massachusetts, United States)
Nov 10, 2025

Brandon DeKosky of the Massachusetts General Hospital, with Carole Long of the National Institute of Allergy and Infectious Diseases, both in the U.S., will develop a high-throughput, microfluidic screening platform to identify antibodies active against blood-stage malaria parasites. The platform is based on individual droplets containing a mix of Plasmodium parasite-infected and uninfected red blood cells together with mammalian cells secreting monoclonal antibodies. Each droplet serves as a parasite neutralization assay: antibodies that block parasite invasion of new red blood cells limit growth of the parasite population, and this is readily quantified using parasite-specific protein activity. With miniature droplets assayed in parallel, mammalian cells expressing a library of monoclonal antibodies can be rapidly screened for antimalarial activity.

Show Descriptions
Results per page