A Malaria Mosquito Gut On-a-Chip
Pietro Alano of the Instituto Superiore de Sanità in Italy will develop a biochip that mimics the midgut of the Anopheles mosquito and can be used to more easily and quickly test candidate anti-malarial compounds for blocking transmission of the causative Plasmodium parasite. Malaria is a potentially fatal infection caused by parasites transmitted between humans through the bites of infected mosquitoes. When a mosquito bites an infected person, immature Plasmodium gametocytes enter the mosquito and transform into an invasive ookinete stage in its midgut. They then traverse the gut wall to the external gut lumen, where they enter their parasite stage. To eliminate malaria, compounds are needed that block the transmission of Plasmodium. However, current methods to evaluate the candidate transmission-blocking drugs or vaccines that are under development are slow and involve feeding malaria-infected blood to mosquitoes, which is potentially dangerous. As an alternative, they will create a biochip to reproduce the mosquito midgut environment that can support the development of parasites, and develop a bioluminescent antibody-based technique to count successfully traversing ookinetes. They will test the performance of the biochip using known anti-transmission drugs.