• About
  • Partnerships
  • Challenges
  • Awarded Grants
  • Grant Opportunities
  • News

Awarded Grants

Grand Challenges is a family of initiatives fostering innovation to solve key global health and development problems. Each initiative is an experiment in the use of challenges to focus innovation on making an impact. Individual challenges address some of the same problems, but from differing perspectives.

Showing page 1 out of 1 with 10 results per page.

Challenges: Global Immunology
Show Descriptions
10
Results per page

Global Immunology and Immune Sequencing for Epidemic Response (GIISER) in Uganda

Pontiano Kaleebu, Uganda Virus Research Institute (Entebbe, Uganda)
Oct 7, 2021
Grand Challenges> Global Immunology

Pontiano Kaleebu of the Uganda Virus Research Institute in Uganda will expand their genome surveillance platform to monitor the circulation of SARS-CoV-2 variants in Uganda to help inform timely public health decisions and the development of diagnostics and vaccines. They will obtain geographically-representative COVID-19 patient samples for genomic sequencing, as well as samples from strategic sites including points of entry, where several variants have emerged. They are also collecting blood samples and nasopharyngeal swabs from patients, some of whom have been vaccinated, to determine their ability to neutralize viral variants and to produce monoclonal antibodies for potential use as diagnostics or for vaccine design. The methods and capacity established during this project will also be used for immunological surveillance of other infectious diseases.

African-Rapid Immuno-Surveillance System for Epidemic Response (ARISE)

Christian Happi, Redeemer’s University, Africa Center of Excellence for Genomics of Infectious Disease (ACEGID (Ede, Nigeria)
Sep 28, 2021
Grand Challenges> Global Immunology

Christian Happi of Redeemer's University in Nigeria will assess the impact and risks of emerging SARS-CoV-2 virus variants in Africa, which are threatening vaccination efforts. They will produce viral pseudotypes using genomic sequences of around ten SARS-CoV-2 variants-of-concern that are dominant in Africa. These pseudotypes will be used in high-throughput neutralization assays with Vero cells in the presence of serum samples taken from over 400 vaccinated or previously-infected Nigerians, which contain many different types of antibodies, to evaluate their ability to neutralize the viral variants. This will reveal how well protected the population is against viral variants, and inform vaccine and immunization strategies. The serum samples that strongly protect against a range of SARS-CoV-2 variants will be subjected to single-cell immunoglobulin gene sequencing to identify neutralizing monoclonal antibodies for designing more effective vaccines.

SARS-CoV-2 Variant Evaluation in Kenya (SAVE-K)

Charles Sande, KEMRI-Wellcome Trust Research Programme (Kilifi, Kenya)
Sep 1, 2021
Grand Challenges> Global Immunology

Charles Sande of the African Research Collaboration for Health (ARCH) in Kenya will build on their existing SARS-CoV-2 genomic surveillance work covering the six counties of Coastal Kenya to identify new SARS-CoV-2 variants and evaluate their sensitivity to existing vaccines. Daily naso- and oropharyngeal samples from suspected COVID 19 cases will be processed for PCR testing and genome sequencing to identify any new SARS-CoV-2 variants. They will then evaluate the potential impact of these new variants on the Kenyan population by measuring the neutralizing activity of antibody-containing plasma obtained from a cohort of vaccinated adults. Using established channels, they will rapidly communicate their results to local and national health ministries, and across the African continent, to inform pandemic control strategies. Selected samples will be preserved for future monoclonal antibody development to target new variants.

Using Antibody Technology to Decipher and Exploit the Immunological Impact of SARS-CoV-2 Variants

Peter Quashie, University of Ghana (Accra, Ghana)
Jul 31, 2021
Grand Challenges> Global Immunology

Peter Quashie of the University of Ghana, West African Centre for Cell Biology of Infectious Pathogens in Ghana will determine the impact of SARS-CoV-2 viral variants and their susceptibility to neutralization by vaccine-induced and naturally-acquired immunity to better manage pandemic control in Ghana. They will evaluate over 600 existing plasma samples taken at multiple timepoints from both vaccinated and unvaccinated COVID-19 patients with associated SARS-CoV-2 sequencing data to identify the viral variants, and additional samples as new variants emerge. They will use ELISA and Luminex assays to screen these samples for anti-viral antibodies. Positive samples will then be used in neutralization assays to measure their ability to protect against different viral variants. Plasma with strong broad or selective neutralization activity will be processed for single cell sequencing to identify monoclonal antibodies for potential therapeutic use. Their pipeline can also be applied to other viral outbreaks such as HIV or Ebola.

Show Descriptions
10
Results per page

Great ideas come from everywhere.

Sign up for email updates of the latest grant opportunities and awards.

View the Grand Challenges partnership network

The Bill & Melinda Gates Foundation is part of the Grand Challenges partnership network. Visit grandchallenges.org to view the map of awarded grants across this network and grant opportunities from partners.