Uncovering Targets of Protective Immunity for Next-Generation Malaria Vaccines
James Beeson of Burnet Institute in Australia, Melissa Kapulu of Health Research Operations Kenya Limited in Kenya, Isaac Ssewanyana of Infectious Diseases Research Collaboration in Uganda, Faith Osier of Imperial College London in the U.K. and Pras Jagannathan of Stanford University in the U.S., will analyze clinical samples using an antibody functional assay platform with malaria antigen arrays to identify antigens targeted by protective antibodies for next-generation malaria vaccines. They will identify antigen-specific functional antibodies that strongly correlate with protective immunity to malaria observed in clinical studies with two populations: Kenyan adults after controlled experimental challenge infection with Plasmodium falciparum and children followed longitudinally who were naturally exposed in Uganda and in Papua New Guinea. They will then use biostatistical modeling approaches to identify antigen and functional antibody types that most frequently occur in protective combinations, identifying additive and synergistic combinations of responses and responses most predictive of protective immunity across age groups and populations. This will enable prioritization of antigens and their combinations for malaria vaccine candidates.