• About
  • Partnerships
  • Challenges
  • Awards
  • Grant Opportunities
  • News

Real-Time Genomic Epidemiology and Improved Data Sharing to Control Middle East Respiratory Syndrome (MERS-CoV)

David Aanensen from the University of Oxford and the Wellcome Sanger Institute in the United Kingdom and Maria van Kerkhove of the World Health Organization in Switzerland will combine next generation DNA sequencing technology with a simple, web-based data collection, processing, and distribution platform to better track the global spread of deadly infectious diseases including Middle East Respiratory Syndrome (MERS-CoV). MERS - also known as camel flu - is a viral disease that causes fever, cough, diarrhea, and shortness of breath, and is transmitted from camels to humans. One third of people diagnosed with the disease die. Next generation sequencing (NGS) technology allows rapid, inexpensive detection of pathogens as they spread. However, laboratories in different member states use different formats for sequencing data, and there is no mechanism for sharing it in real time. This limits the value of the technology for stopping outbreaks. To address this, they will establish routine sequencing protocols for both human and camel samples, and develop an interactive web platform on which the sequencing and epidemiological data can be shared. This will help develop more effective, real-time medical and non-medical interventions at local, national, and international levels. Once established, the protocols developed here may be applied to outbreaks of other diseases.

More information about 2018 Grand Challenges Annual Meeting Call-to-Action

Great ideas come from everywhere.

Sign up for email updates of the latest grant opportunities and awards.

View the Grand Challenges partnership network

The Bill & Melinda Gates Foundation is part of the Grand Challenges partnership network. Visit www.grandchallenges.org to view the map of awarded grants across this network and grant opportunities from partners.