Modeling of Microbial Community Dynamics to Enhance Ecological Stability and Growth
Ophelia Venturelli of the University of Wisconsin-Madison in the U.S. will study the growth kinetics and microbial interactions of a synthetic bacterial community in order to optimize bioreactor design and produce large quantities of mixed cultures at low cost. Mixed microbial populations are used to reconstitute the healthy gut microbiota in infants and children who have suffered malnutrition. However, affordable, large-scale production of microbial communities for biotherapeutics is challenging, in part because of poor understanding of how the growth and viability of individual strains are impacted by environmental factors and the presence of other microbes. To address this, they will build a dynamic model of a synthetic 12-member community that mimics the functional and phylogenetic diversity of the human gut microbiome and monitor its stability and growth over time and in response to variations in culturing parameters. This information will be used to predict community growth and stability in bioreactors, which will then be tested. Their approach is low cost, scalable to industrial-sized bioreactors, and can be generalized to other microbial communities relevant for human health.