Identification of Novel Inhibitors Against Malarial and Trypanosomal Hsp90
Fortunate Mokoena of North West University in South Africa will couple molecular docking approaches with in vitro and in vivo validation to identify novel inhibitors of Trypanosoma brucei and Plasmodium falciparum, the causative agents of the lethal diseases, African trypanosomiasis and malaria, respectively. Current drugs targeting these pathogens have limited efficacy due to the development of resistance and can cause severe side effects. They will identify a new group of drugs that specifically target parasitic molecular chaperone proteins, specifically heat shock protein 90 (Hsp90), which is an ATPase that helps correctly fold newly synthesized proteins. They will computationally model the structures of Hsp90 from both T. brucei and P. falciparum and prepare a three-dimensional database of inhibitors for virtual screening. The top 30 candidate inhibitors that selectively bind parasitic Hsp90 will be subjected to geometry optimization and induced fit molecular docking, followed by evaluation of their parasite killing activity in vivo.